GCr15 钢过热后的返修组织与接触疲劳寿命

谢 军1 杜向辉2

(1.衡阳纺织机械厂 湖南 衡阳 421007 2.海军驻洛阳地区航空军事代表室,河南 洛阳 471009)

摘要。对比试验研究了 GCr15 钢经过一次淬回火后,金相组织合格、不合格(>5级)以及不合格组织经返修合格。3种组织状态下的马氏体组织形态和接触疲劳寿命。结果表明,返修后的合格组织得到细化,接触疲劳寿命有明显地提高。

关键词 滚动轴承 ;GCr15 钢 过热组织 ;马氏体 ;接触疲劳 ;寿命

中图分类号:TH133.33;TG156;TG115.58

文献标识码:B

文章编号:1000-3762(2006)09-0023-02

GCr15 钢制轴承零件在实际生产中因种种原因,经过一次淬回火后,马氏体组织粗化(> 5级),超过现行标准 JB/T1255 - 2001 所规定的要求,需要进行返修处理,以保证马氏体组织合格。本文对比分析了该种钢经一次淬火后合格组织、不合格组织返修前与返修后这3种组织状态下的接触疲劳寿命,并对影响疲劳寿命的原因进行了分析。

1 试验用料及试样加工

试验采用 \$55 mmGCr15 钢热轧退火棒料,其主要化学成分(质量分数,%)为:0.99C,0.30Mn,0.18Si,1.47Cr,0.008S,0.012P,0.04Ni,0.10Cu。冶金质量检验结果见表 1。

表 1 试验用料的冶金质量

非金属夹杂物/级						碳化物不均匀性		退火组织	脱碳			
I	A	I	3	(3	D		/级		/级	/mm	
细	粗	细	粗	细	粗	细	粗	带状	网状	液析	4	0.25
1.5	1.0	1.0	0.5	0	0	1	0.5	2.0	2.0	1.0	4	0.25

由上述试验可知,该材料的化学成分及冶金质量符合 GB/T18254 - 2002 标准要求。

把试验用棒料车加工成 3 组推力片试样 ,试样尺寸为 ϕ 50 mm \times ϕ 30 mm \times 8 mm ,每组各 20 个试样。

2 试样的热处理工艺及热处理质量

3 组推力片试样的热处理均在 RX – 45 型箱式电炉中进行 用木炭防止氧化脱碳。

1组与 2组试样的热处理工艺为 870 $^{\circ}$ $^{\circ}$ × 45 min 淬油 + 150 $^{\circ}$ × 2 h 回火 ,得到的淬回火组织大于 5 级 3 组的热处理工艺为 840 $^{\circ}$ × 45 min 淬油 + 150 $^{\circ}$ × 2 h 回火 ,得到淬回火组织为 4 级。保留 1 组试样 ,对 2 组过热试样再进行返修 ,为了消除第一次相变后产生的内应力 ,对该组试样进行预备处理 ,其预备处理工艺为 580 $^{\circ}$ × 1.5 h 高温回火 ,高温回火后的金相组织为回火索氏体 +粒状珠光体 ,然后 830 $^{\circ}$ × 40 min 淬油 + 150 $^{\circ}$ × 2 h 回火 ,热处理后的金相组织为 3 级。

把 3 组试样磨削加工至所需的成品尺寸及精度要求,按 JB/T1255 - 2001 标准检验 3 组成品试样的热处理质量,其结果见表 2。

表 2 3组试样的热处理质量

组别	淬回火后的硬度/HRC	晶粒度1)/级	金相组织/级
1	63.7 ~ 64.6	7	> 5
2	64.0 ~ 64.8	11	3
3	63.5 ~ 64.1	8 ~ 9	4

3 接触疲劳寿命对比试验

接触疲劳寿命试验在 TLP 接触疲劳试验机上进行 ,最大接触应力为 4 214 MPa ,试验机转速为 2 040 r/min ,N32 机油循环润滑。每组试验 16 个有效数据 ,为了消除各台试验机对试验数据的影响 ,3 组试样在 6 台试验机上交叉进行。

将试验结果按最佳线性不变估计进行数据处理,得出疲劳寿命的 Weibull 估计参数,其结果见

表 3 ,接触疲劳寿命曲线见图 1。

表 3 接触疲劳寿命对比结果

组别	额定寿命 L ₁₀ ⁄(×10 ⁷ r)	寿命比	中值寿命 L ₅₀ /(×10 ⁷ r)	寿命比	斜率α
1	0.13	1	0.55	1	1.31
2	2.27	17.46	6.09	11.07	1.82
3	1.73	13.31	3.85	7.00	2.01

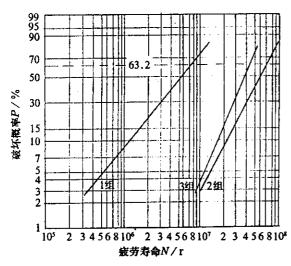


图 1 接触疲劳寿命 P – N 曲线

由表 3、图 1 可知 ,1 组接触疲劳寿命最低 ,3 组寿命居中 ,返修后的 2 组寿命最高。

4 试验结果分析

4.1 马氏体针长度与残余奥氏体含量

在3组推力片试样中均随机抽取试样,制备成金相试样,置于光学显微镜下放大后观察并测量马氏体针的长度,在3015型 X 射线衍射仪上测试残余奥氏体含量,结果列于表4。

表 4 马氏体针长度与残余奥氏体含量

组别	淬火后马氏体形态	白区马氏体针长度 /μm	残余奥氏体
1	大量针状 + 少量结晶	13 ~ 15	19.4
2	隐晶 + 局部细针	2 ~ 4	13.2
3	细小结晶 + 少量针状	3 ~ 6	11.6

4.2 淬回火前后碳化物颗粒大小分析

在电镜下对3组试样淬回火前、后的碳化物颗粒大小及残留碳化物含量进行了分析,结果见表5。

由表 4、表 5 测试分析可知,经返修淬火后, 试样的碳化物平均粒径比3组试样小,且分布均

表 5 碳化物颗粒大小及残留量

组别	淬火前碳化物	淬回火后			
细加	平均粒径/μm	碳化物粒径/µm	残留量/%		
1	0.97	0.66	5.2		
2	0.97	0.72	5.8		
3	0.97	0.83	6.3		

5 结论

(1)GCr15 钢在淬火工艺恰当合理的情况下进行返修,其马氏体组织、碳化物粒径、硬度及晶粒度均得到了改善。

(2)返修后(2组)接触疲劳寿命高于一次热处理(3组)的寿命,更明显地高于过热组织(1组)的寿命。

参考文献:

- [1] 李 超, 邹胜利. GCr15 钢碳化物细化处理及其对接触疲劳性能的影响[D]. 哈尔滨:哈尔滨工业大学, 1980.
- [2] 江 涛.GCr15 轴承钢双细化工艺对接触疲劳寿命 影响的研究[R].洛阳:洛阳轴承研究所,1982.

(编辑:赵金库)

《中国轴承论坛第四届研讨会 论文集》已出版(100元/册),需要者 请与洛阳轴承研究所技术资料发行 室联系。

> 联系人:刘 霞 电 话(0379)64881150