

中华人民共和国机械行业标准

JB/T 5100 - 1991

熔模铸造碳钢件 技术条件

1991-07-15 发布 1992-07-01 实施

中华人民共和国机械行业标准

JB/T 5100 - 1991

熔模铸造碳钢件 技术条件

1 主题内容与适用范围

本标准规定了熔模铸造碳钢件的分类、技术要求、试验方法、检验规则等。本标准适用于一般工程用熔模铸造碳钢件。

2 引用标准

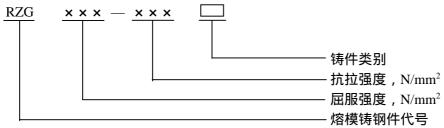
GB 222	钢的化学分析用试样取样法及成品化学成分允许偏差
GB 223.1~223.5	钢铁及合金中碳、硅、锰、磷、硫量的测定
GB 223.10	钢铁及合金化学分析方法 铜铁试剂分离-铬天青 S 光度法测定铝
GB 223.13	钢铁及合金化学分析方法 高锰酸钾氧化容量法测定钒
GB 223.18	钢铁及合金化学分析方法 硫代硫酸钠-碘量法测定铜
GB 224	钢的脱碳层深度测定法
GB 228	金属拉伸试验方法
GB 229	金属夏比(U 型缺口)冲击试验方法
GB 230	金属洛氏硬度试验方法
GB 231	金属布氏硬度试验方法
GB 2106	金属夏比(V 型缺口)冲击试验方法
GB 6060.1	表面粗糙度比较样块—铸造表面
GB 6414	铸件尺寸公差
GB 11352	一般工程用铸造碳钢件

3 铸件分类与牌号表示方法

3.1 分类原则

根据铸件工作条件及用途分三类,见表1。

表 1 铸件分类


类 别	定义	检 验 项 目
	承受重载荷或工作条件复杂的用于重要 部位铸件、零件损坏将危及整机安全运行	力学性能、化学成分、尺寸公差、表面粗糙度、 表面缺陷、其他特殊要求
	受中等载荷,用于重要部位,铸件损坏 影响部件正常工作造成事故	力学性能、化学成分、尺寸公差、表面粗糙度、 表面缺陷
	承受轻载荷,用于一般部位	力学性能、尺寸公差、表面粗糙度、表面缺陷

3.2 类别确定

铸件类别应由设计部门在图样或有关文件中规定,对未注明类别的铸件,视为一类铸件。

3.3 铸件牌号表示方法

熔模铸造碳钢件牌号表示方法如下:

例如:RZG200—400 。

4 技术要求

- 4.1 铸件尺寸公差
- **4.1.1** 成批大批量生产的铸件尺寸公差按 GB 6414 中 CT4~CT7 级规定执行或按图样及订货协议规定的技术条件执行。
- 4.1.2 铸件尺寸公差不包括起模斜度,起模斜度按附录 A 中表 A1 规定执行。
- 4.1.3 用户不提供图样自带模具时,铸件尺寸公差由供需双方商定。
- 4.2 铸件表面粗糙度

熔模铸造碳钢件表面粗糙度为 R_a1.60~R_a12.5 范围内。

- 4.3 铸件表面缺陷
- 4.3.1 铸件非加工表面孔洞类缺陷按表 2 规定执行。且不得在铸件反面对应部位有类似缺陷存在。

铸件分类 尺寸参数 直径不大于 1.0 mm 直径不大于 1.2 mm 直径不大于 2.0 mm 深度不大干 0.5 mm 的 深度不大于 1.0 mm 的 深度不大于 1.8 mm 的 孔洞数 孔洞数 孔洞数 铸件壁厚 每 25 mm 2 2 3 4 mm × 25 mm 铸件壁厚 区域内 3 3 4 > 4 mm 孔间距离 mm > 10 > 10

表 2 铸件非加工表面上孔洞类缺陷限值

- **4.3.2** 铸件加工表面允许存在可加工除去的任何缺陷,加工后表面允许存在直径不大于 0.5~mm、深度不大于 0.3~mm、相互距离不小于 10~mm 的单个孔洞。
- **4.3.3** 铸件表面脱碳层一般不检查,如用户有要求时,应在订货合同或有关技术文件中规定,脱碳层深度应符合表 3 规定。

表 3 铸件表面允许的脱碳层深度

mm

铸 件 壁 厚	3	> 3~5	> 5~10	> 10~20	> 20
最大单面脱碳层深度	0.3	0.4	0.5	0.8	1.0

4.4 铸件力学性能应符合表 4 规定。

表 4 铸件力学性能

			最 /	小 值		
熔模铸钢				根 据 合 同 选 择		
牌号	s 或 _{0.2} N/mm ²	N/mm ²			冲 击 韧 性	
			%	%	$rac{A_{ m kV}}{ m J}$	$a_{ m k}$ kg · m/cm ²
RZG200—400	200	400	25	40	30	6.0
RZG230—450	230	450	22	32	25	4.5
RZG270—500	270	500	18	25	22	3.5
RZG310—570	310	570	15	21	15	3.0
RZG340—640	340	640	10	18	10	2.0

表中: A_{kV} ——冲击吸收功(V型);

a_k——冲击韧性(U型)。

- 4.5 铸件不允许有裂纹。
- 4.6 铸件化学成分应符合表 5 的规定。

元素最高含量 % 熔模铸钢牌号 残余元素 2) C^{1} Mn^{1} Si S Ni Cr Cu Mo RZG200-400 0.20 0.80 RZG230—450 0.30 0.50 RZG270—500 0.40 0.90 0.04 0.30 0.35 0.30 0.20 0.05 RZG310-570 0.50 RZG340—640 0.60

表 5 化学成份

- 注:1)对上限每减少 0.01%的碳,允许增加 0.04%的锰;对 RZG200—400 锰最高至 1.00% ,其余四个牌号锰最高至 1.2%。
 - 2) 残余元素总量不超过 1.00%, 如需方无要求, 残余元素不进行分析。

4.7 铸件修整

- **4.7.1** 加工面上浇冒口余根留量不大于 1~3~mm ,非加工面上浇冒口余根应磨平 ,或余量不大于 0.5~mm , 个别难清理余根可由供需双方商定。
- 4.7.2 易变形铸件允许校正。校正后需要消除应力的铸件,应在技术文件中注明。
- **4.7.3** 铸件允许焊补。不允许焊补的铸件应在图样中注明,焊补后不得影响外观质量和加工性能,焊补后需经热处理。
- 4.8 铸件必须经过热处理,需方如无特殊要求时,热处理工艺由供方自定。
- 4.9 其他

需方要求对本标准未列项目加以控制时,由供需双方商定。

- 5 试验方法
- 5.1 力学性能
- 5.1.1 力学性能仲裁以梅花试块加工的试样为准,试块的铸造工艺和热处理状态与铸件相同。
- 5.1.2 拉力试验按 GB 228 执行, 试样直径为 5 mm 的短试棒。

- 5.1.3 冲击试验按 GB 2106 执行, 但在供方尚不具备 V 型缺口的试验条件下, 可按 GB 229 的规定执行。
- 5.1.4 铸件表面硬度测定在试块上或去掉脱碳层的铸件表面上进行,测定方法按 GB 230 或 GB 231 执行。
- 5.2 化学成分
- 5.2.1 化学分析取样方法按 GB 222 执行。
- 5.2.2 化学成分仲裁按 GB 223 执行。
- 5.3 铸件表面粗糙度用轮廓仪或按 GB 6060.1 表面粗糙度比较样块测定。
- 5.4 铸件表面脱碳层深度检查按 GB 224 执行。
- 6 检验规则
- 6.1 检验批次

铸件的检验按批次进行,铸件批次按炉料、牌号、熔炼工艺、热处理状态或炉次划定,具体数量 或重量由供需双方商定。

- 6.2 力学性能检验
- 6.2.1 每批次铸件取一个拉力试样,两个冲击试样。
- 6.2.2 两个冲击试验结果的均值须达到表 4 的规定值,并只允许有一个不低于规定值的 75%。
- 6.2.3 拉力试验和冲击试验结果须达到表 4 的规定值,低于表 4 规定值时,可对该项目进行复验。
- **6.2.3.1** 复检拉力,应从同炉次取两个备用试样进行试验,其中只要有一个不符合表 4 规定,即应对该炉次铸件重新热处理。
- 6.2.3.2 复检冲击韧性,应从同炉次取三个备用试样进行试验,该结果与原结果相加,重新计算平均值,新平均值应符合表4规定,否则该炉次铸件重新热处理。
- 6.2.4 拉力试验或冲击试验复检不得超过两次。
- 6.3 铸件表面质量应逐件检查,检查结果应符合4.2条、4.3条的规定。
- 6.4 铸件几何尺寸按批次抽检,每批次抽检数量由供需双方商定,抽检结果应符合 4.1 条的规定。
- 7 标志、包装、运输、贮存
- 7.1 标志与证明书
- 7.1.1 铸件应在非加工面上作出供方商标和其他必要标志,当无法在铸件上作出标志时,可打印在附于每批铸件的标签上。
- 7.1.2 出厂铸件应附以检验合格证或质量证明书,其中包括:
 - a. 供方名称;
 - b. 铸件名称;
 - c. 铸件图号、材质牌号;
 - d. 制造日期(或编号)生产批号。
- 7.2 表面防护、包装、运输和贮存

铸件在检验以后应进行防护处理和包装。

铸件表面防炉、包装、运输和贮存应符合订货协议的规定。

附录 A 熔模铸造碳钢件起模斜度 (参考件)

A1 熔模铸造碳钢件起模斜度按表 A1 执行。

表 A1 熔模铸造碳钢件起模斜度

模样主要成型 表面高度 mm	起模斜度				
	外表面	单 面 增 值 mm	内表面	单 面 增 值 mm	
10	30	0.08	1 30	0.26	
> 10~18	20	0.10	1.0 °	0.31	
> 18~30	15	0.12	45	0.34	
> 30~50	15	0.20	45	0.65	
> 50~80	10	0.23	30	0.69	
> 80~120	10	0.34	30	1.04	

附加说明:

本标准由机械电子工业部沈阳铸造研究所提出并归口。

本标准由沈阳铸造研究所、沈阳拖拉机厂、庆华工具厂、沈阳第一机床厂、新光动力机械公司、 沈阳第一阀门厂负责起草。

本标准主要起草人郁鸣、沈桂荣、曹键、李德成、韩宝刚。

中 华 人 民 共 和 国 机 械 行 业 标 准 熔模铸造碳钢件 技术条件 JB/T 5100 - 1991

机械科学研究院出版发行 机械科学研究院印刷 (北京首体南路2号 邮编 100044)

开本 880 × 1230 1/16 印张 5/8 字数 10,000 1991 年 11 月第一版 1991 年 11 月第一次印刷 印数 1 - 500 定价 1.00 元 编号 0391

机械工业标准服务网:http://www.JB.ac.cn