前 言

本标准等效采用国际标准 ISO 2566-2:1984《钢的伸长率换算一奥氏体钢》。

- 本标准的适用范围、换算公式、换算结果与 ISO 2566-2 相同。
- 本标准与 ISO 标准有下列差异:
- 1. 本标准比 ISO 2566-2 多给出了伸长率换算的基本公式,ISO 标准只给出了标距为 5.65 $\sqrt{S_0}$ 和 4 $\sqrt{S_0}$ 与定标距之间的两个特定条件下的换算公式,而这两个公式可以由基本公式推导出来。
- 2. 本标准给出的换算公式包括了 ISO 标准中全部换算表的计算公式,因此将 ISO 标准中的 21 个换算表减至 4 个。
- 3. 本标准采用的符号与 GB/T 228—1987《金属拉伸试验方法》和 GB/T 10623—1989《金属力学性能试验术语》保持一致。
 - GB/T 17600 在《钢的伸长率换算》的总标题下,分为两个部分:
 - GB/T 17600.1-1998 第1部分:碳素钢和低合金钢
 - GB/T 17600.2-1998 第2部分: 奥氏体钢
 - 本标准由国家冶金工业局提出。
 - 本标准由全国钢标准化技术委员会归口。
 - 本标准起草单位:冶金部信息标准研究院、本溪钢铁公司特钢公司、太原钢铁公司钢研所。
 - 本标准主要起草人:姜清梅、叶振华、栾燕、杜娟、王烽、蔡士达。

ISO 前言

ISO(国际标准化组织)是世界范围的各国标准化组织(ISO 成员国)的联合体。通过 ISO 技术委员会发展国际标准。每个被授权技术委员会的成员国均有权代表该技术委员会。与 ISO 有关的政府的、非政府的国际组织也参加这项活动。被技术委员会采纳的国际标准草案作为国际标准被 ISO 委员会认可前将发给成员国进行投票表决。国际标准 ISO 2566-2 由 ISO/TC17 钢委员会归口,并在 1983 年 4 月发给各成员国表决。

投赞成票的成员国有:

澳大利亚	奥地利	比利时	保加利亚	加拿大	中国	捷克	芬兰
法国	德国	匈牙利	印度	伊朗	意大利	肯尼亚	朝鲜
韩国	墨西哥	荷兰	挪威	波兰	罗马尼亚	南非	西班牙
旧委尼亚	表団	上日甘	蓝国	茶联			

由于技术上的原因投反对票的成员国有:

瑞典

中华人民共和国国家标准

钢的伸长率换算第2部分: 奥氏体钢

GB/T 17600. 2—1998 eqv ISO 2566-2:1984

Steel—Conversion of elongation values
—Part 2: Austenitic steels

1 范围

本标准规定了室温下不同标距断后伸长率之间的换算方法,包括伸长率的换算公式和换算因子表以及进行这类换算的曲线图。

本标准适用于固溶处理状态下的奥氏体不锈钢,抗拉强度在 $450\sim750~\mathrm{MPa}$,标距不超过 $25~\sqrt{S_o}$,且宽厚比不超过 $20~\mathrm{的试样}$ 。

本标准不适用于冷轧钢、淬火回火钢和非奥氏体钢。

当板状试样厚度小于 3 mm 时,本标准公式(1)中的指数 n 随厚度的减少而增加,换算的伸长率值必须经过供需双方商定。

本标准的换算方法是国际上统一采用的,其在本标准范围内的换算是可靠的,但由于影响伸长率测定的因素很多,因此是否采用本标准换算应由有关标准或协议决定。

如有争议或仲裁时,应按有关标准或协议规定的标距测定伸长率值。

2 引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB/T 228-1987 金属拉伸试验方法

GB/T 8170-1987 数值修约规则

3 定义

本标准采用下列定义。

- 3.1 试样标距 拉伸试验过程中用以测量试样伸长的两标记之间的长度。试验前的标距称原始标距,试样拉断后的标距称断后标距。
- 3.2 比例标距 与试样横截面积的平方根成比例关系的试样原始标距,可表示为 $L_0 = K \sqrt{S_0}$ (符号见表 1)。例如: $L_0 = 5$. 65 $\sqrt{S_0}$ 、11. 3 $\sqrt{S_0}$ 以及 $4d_0$ 。
- 3.3 定标距 通常不规定标距长度与试样横截面积的平方根之间的比例关系,而是以给定尺寸表示标 距长度。例如: $L_0 = 50 \text{ mm}$ 、80 mm,100 mm 和 200 mm。

4 符号

本标准采用的符号见表 1。

表	1	符号
4X	J	כי ניו

符号	说明
δ	实测断后伸长率
δ.	欲求另一标距的断后伸长率
d_{\circ}	圆形试样平行长度部分的原始直径
L_0	试样原始标距
$L_{ extsf{or}}$	δ, 所对应的试样原始标距
$\mathcal{S}_{\mathfrak{d}}$	试样原始 横截 面积
S_{ar}	δ, 所对应的试样原始横截面积
K	拉伸试样的比例系数, $K=L_0/\sqrt{S_0}$
$K_{\rm r}$	δ_c 所对应的试样比例系数, $K_c = L_{0r}/\sqrt{S_{0r}}$
n	近似材料常数,在本标准适用范围内 n=0.127
λ	不同比例标距之间伸长率的换算因子
α	不同定标距之间伸长率的换算因子
β	标距为 $5.65\sqrt{S_o}$ 的伸长率与不同定标距伸长率之间的换算因子
' γ	标距为 $4\sqrt{S_o}$ 的伸长率与不同定标距伸长率之间的换算因子

5 伸长率的换算

5.1 基本公式

或

伸长率的换算以 Oliver 公式为基础,用于换算的基本公式可表示为:

为便于使用,本标准给出了由基本公式导出的,在不同条件下使用的简化公式及换算因子;根据公式绘制了曲线图,可从图形上直接查出伸长率的换算值。

注:本标准中伸长率的换算值按 GB/T 228 和 GB/T 8170 的相应条款进行修约。

5.2 由已知比例标距的伸长率换算到另一个比例标距的伸长率

根据式(2)计算出常用比例试样的(K/K_i) $^{0.127}$ 值,称换算因子 λ ,列于表 2,则 $\delta_i = \lambda \cdot \delta$ 。例:已知标 距为 5.65 $\sqrt{S_o}$ 的伸长率为 25%,换算成标距为 11.3 $\sqrt{S_o}$ 的伸长率。查表 2, λ = 0.916,则 δ_i = 0.916× 25%= 22.9%,修约到 23%。

表 2 不同比例标距之间的换算因子 A

实测伸长率试样的原始标距 L。	换算到下列比例标距的换算因子》					
	4 √S₀	$5.65 \sqrt{S_o}$	8. 16 $\sqrt{S_o}$	11.3 $\sqrt{S_0}$	$4d_{0}$	8d₀
$4\sqrt{S_0}$	1.000	0.957	0. 913	0.876	0. 985	0.902
5. 65 √S ₀	1.045	1.000	0.954	0.916	1.029	0.942
8. 16 $\sqrt{S_0}$	1.095	1.048	1.000	0 . 9 59	1.078	0. 987
11.3 √S₀	1. 1.41	1.092	1-042	1.000	1. 124	1.029
$4d_0$	1.015	0.972	0.928	0-890	1.000	0.916
8 <i>d</i> ₀	1.109	1.061	1.013	0.972	1.092	1. 000

5.3 横截面积相等的试样,从一个定标距伸长率换算到另一个定标距的伸长率

将基本公式(1)简化为:

$$\delta_{r} = (L_{0}/L_{0r})^{0.127} \cdot \delta \qquad \cdots (3)$$

计算出常用定标距试样的 $(L_0/L_{0r})^{0.127}$ 值,称换算因子 α ,列于表 3,则 $\delta_r = \alpha \cdot \beta$ 。

例:已知定标距为 200 mm,的试样的实测伸长率为 20%,换算到相同横截面积下,定标距为100 mm 的伸长率值,查表 3,得到 $\alpha=1.092$,则 $\delta_r=1.092\times20\%=21.84\%$,修约到 22%。

实测伸长率	换算到下列比例标距的换算因子 α				
试样的原始标距 L _o ,mm	50 mm	80 mm	100 mm	200 mm	
50	1.000	0. 942	0.916	0. 839	
80	1.062	1.000	0. 972	0.890	
100	1.092	1. 029	1.000	0. 916	
200	1. 193	1, 123	1, 092	1,000	

表 3 不同定标距之间的换算因子 α(横截面积相同)

5.4 由比例标距伸长率换算定标距的伸长率

将基本公式简化成:

如果已知标距为 5.65 $\sqrt{S_0}$ 的伸长率,需换算成其他定标距试样的伸长率,则:

计算出 1. $25(\sqrt{S_{\rm or}}/L_{\rm or})^{0.127}$ 值,称换算因子 β ,列于表 4,则 δ ,= β · δ 。

如果已知标距为 4 $\sqrt{S_o}$ 的伸长率,需换算其他定标距试样的伸长率,则

计算出 $1.19(\sqrt{S_{0r}}/L_{0r})^{0.127}$ 值,称换算因子 γ ,列于表 5,则 $\delta_r=\gamma \cdot \delta$ 。

如反向换算,即将定标距的伸长率换算成比例标距的伸长率时,则采用换算因子的倒数。

例 1:标距为 5.65 $\sqrt{S_0}$ 的伸长率为 20%,换算成宽为 25 mm,厚为 6 mm,标距为 50 mm 试样的伸长率,根据表 4 换算为 $\delta_r=20\%\times1.045=20.9\%$,修约到 21%。

例 2:40 mm×10 mm,标距 200 mm 的试样,伸长率为 25%,换算成标距为 5.65 $\sqrt{S_0}$ 的伸长率,根据表 4 换算为 δ_r =25%×1/1.045=23.9%,修约到 24%。

5.5 横截面积不等的试样,由一个定标距伸长率换算另一个定标距的伸长率

按式(1)换算。也可利用表 4 或表 5 分两步进行换算,首先将已知定标距的伸长率换算成比例标距的伸长率,如 5.65 $\sqrt{S_0}$ 或 4 $\sqrt{S_0}$,再换算成欲求定标距的伸长率。

例:40 mm×15 mm,标距为 200 mm 试样的伸长率为 24%,换算成 30 mm×10 mm 试样,标距为 200 mm,100 mm 和 50 mm 的伸长率。

首先根据表 4 换算到 5.65 $\sqrt{S_0}$ 标距的伸长率,即 24%×1/0.957=25.1%;

换算到 30 mm×10 mm,200 mm 标距的伸长率,即 $\sqrt{S_0}$ 25.1%×0.916=23.0%修约到 23%;

换算到 30 mmimes10 mm,100 mm 标距的伸长率,即 $\sqrt{S_0}$ 25.1%imes1.000=25.1%,修约到 25%;

换算到 30 mm×10 mm,50 mm 标距的伸长率,即 $\sqrt{S_0}$ 25.1%×1.093=27.4%,修约到 27%;

其他比例标距的伸长率可根据表 2 给出的换算因子换算。

6 曲线图的应用

- 6.1 曲线图 1~5 是伸长率换算的另一种快速方法。
- 6.2 图 1 和图 2 是根据式(5)在等式两边取对数而得到的,图 1 用于标距 5.65 $\sqrt{S_0}$ 和 50 mm 之间的伸长率换算,图 2 用于标距 5.65 $\sqrt{S_0}$ 和 200 mm 之间的伸长率换算。

例: 25 mm×12.5 mm, 横截面积为 312.5 mm², 标距为 200 mm 的试样, 伸长率 25%, 求标距 $5.65\sqrt{S_o}$ 的伸长率。

从图 2 的横坐标上找到 312.5 mm² 和纵坐标上找到 25,其交点通过的斜线所对应的值为 27.2%,**修约至** 27%;即为欲求的 5.65 $\sqrt{S_o}$ 标距的伸长率值。

- **6.3** 图 3 和图 4 是根据式(6)在等式两边取对数而得到的,分别用于标距 4 $\sqrt{S_0}$ 与 50 mm 及标距 4 $\sqrt{S_0}$ 与 200 mm 之间的伸长率换算,应用方法同 6.2。
- 6.4 图 5 是根据式(2)的换算因子 $\lambda = (K/K_r)^{0.127}$ 取对数得到的,即

用于获得各种类型试样的换算因子 \, , 需按下述步骤进行:

- a) 计算出两个试样的比例系数, $K=L_0/\sqrt{S_0}$, $K_r=L_{0r}/\sqrt{S_{0r}}$;
- b) 从图 5 上读出换算因子 λ ,即横坐标上找到 K,纵坐标上找到 K,其交点通过的斜线所对应的值为 λ 值;
 - c) 求得的伸长率为: $\delta_r = \lambda \cdot \delta$

例:40 mm×15 mm 板状试样,横截面积为 600 mm²,定标距 L_0 =200 mm 的实测伸长率为 24%,需换算成 30 mm×10 mm 的横截面积为 300 mm² 的标距为 L_{0r} =100 mm 的伸长率。

首先求出 $K=200/\sqrt{600}=8.16$, $K_r=100/\sqrt{300}=5.77$ 。

再从横坐标找到 8.16,纵坐标找到 5.77,其交点处于斜线 1.00 与 1.05 之间,λ=1.04。

最后 $\delta_1 = 1.04 \times 24\% = 25.0\%$,修约到 25%

表 4 由标距 5.65 $\sqrt{S_0}$ 换算到不同定标距的换算因子 β

欲求伸长率的试样 横截面积 Sor mm²	由标距 5.65 $\sqrt{S_o}$ 换算到下列定标距的换算因子 β					
	200 mm	100 mm	. 80 mm	50 mm		
5	0.706	0. 771	0. 794	0.842		
10	0.738	0.806	0.829	0.880		
15	0.757	0. 827	0.851	0. 903		
20	0.771	0.842	0.867	0.920		
25	0.782	0.854	0.879	0. 933		
30	0.792	0.864	0.889	0.944		
35	0.779	0.873	0.898	0. 953		
40	0.806	0.880	0.906	0. 961		
45	0.812	0.887	0.912	0.969		
50	0. 818	0.893	0.919	0. 975		
55	0.823	0.898	0.924	0.981		
60	0.827	0.903	0. 929	0- 986		

表 4(续)

欲求伸长率的试样 横截面积 S₀, mm²	Ħ	标距 5.65 √S ₀ 换算到	下列定标距的换算因子	β
	200 mm	100 mm	80 mm	50 mm
70	0.835	0. 912	0. 938	0. 996
80	0.842	0.920	0.946	1.005
90	0.849	0.927	0.953	1.012
100	0-854	0. 933	0. 960	1.019
110	0.860	0. 939	0.966	1. 025
120	0.864	0.944	0. 971	1.031
130	0.869	0.949	0.976	1.036
140	0.873	0.953	0- 981	1.041
150	0. 877	0.957	0. 985	1.045
160	0.880	0.961	0.989	1. 050
170	0.884	0.965	0. 993	1.054
180	0.887	0.969	0. 996	1.058
190	0. 890	0-972	1.000	1.061
200	0.893	0.975	1.003	1.065
210	0.896	0- 978	1.006	1.068
220	0. 898	0. 981	1.009	1.071
230	0.901	0-984	1.012	1.074
240	0. 903	0.986	1.015	1.077
250	0. 906	0.989	1.017	1.080
260	0. 908	0.991	1.020	1. 083
270	0.910	0.994	1. 022	1.085 .
280	0.912	0. 996	1.025	1.088
290	0.914	0. 998	1.027	1.090
300	0.916	1.000	1.029	1.093
310	0.918	1.003	1. 031	1. 095
320	0- 920	1.005	1.033	1. 097
330	0. 922	1.007	1.035	1. 099
340	0.923	1.008	1. 037	1. 101
350	0.925	1.010	1.039	1. 103
360	0.927	1.012	1.041	1. 105
370	0. 928	1.014	1.043	1. 107
380	0.930	1.016	1.045	1.109
390	0. 932	1.017	1.047	1.111
400	0. 933	1. 019	1.048	1. 113
410	0. 935	1. 021	1.050	1. 113
420	0.936	1.022	1.051	1.114
430	0. 937	1.024	1.053	1.118
440	0. 939	1.025	1. 055	1.118
450	0. 940	1. 023	1. 056	1. 113
460	0.941	1. 021	1.058	1. 121
470	0. 943	1. 020	1.059	1. 123 1. 124
480	0. 944	1. 025	1. 060	1. 124

表 4(续)

欲求伸长率的试样	Ħ	标距 5.65 √S。换算到	下列定标距的换算因子	β
横截面积 S _{or} — — mm²	200 mm	100 mm	80 mm	50 mm
490	0. 945	1. 032	1. 062	1. 127
500	0. 946	1.033	1.063	1.129
550	0. 952	1.040	1.070	1, 135
600	0. 957	1.045	1.076	1.142
650	0.962	1.051	1.081	1.148
700	0.967	1.056	1.086	1. 153
750	0. 971	1.060	1.091	1. 158
800	0.975	1. 065	1. 095	1.163
850	0. 979	1.069	1. 100	1. 167
900	0. 982	1.073	1. 104	1. 171
950	0. 986	1.076	1. 107	1. 176
1 000	0. 989	1. 080	1. 111	1. 179
1 050	0. 992	1- 083	1.114	1. 183
1 100	0. 995	1.087	1. 118	1- 187
1 150	0.998	1.090	1. 121	1. 190
1 200	1.000	1.093	1.124	1. 193
1 250	1.003	1. 095	1. 127	1- 196
1 300	1.006	1. 098	1. 130	1. 199
1 350	1.008	1. 101	1. 132	1. 202
1 400	1.010	1. 103	1. 135	1. 205
1 450	1.013	1. 106	1. 138	1. 208
1 500	1.015	1. 108	1.140	1. 210
1 550	1.017	1. 110	1. 142	1.213
I 600	1.019	1.113	1. 145	1.215
1 650	1.021	1. 115	1.147	1. 217
1 700	1.023	1.117	1.149	1. 220
1 750	1. 025	1. 119	1- 151	1- 222
1 800	1-027	1. 121	1. 153	1- 224
1 850	1. 028	1. 123	1. 155	1. 226
1 900	1.030	1- 125	1. 157	1- 228
1 950	1. 032	1. 127	1. 159	1. 230
2 000	1.033	1. 129	1- 161	1. 232
2 050	1.035	1.130	1. 163	1. 234
2 100	1. 037	1. 132	1. 1 6 5	1- 236
2 150	1.038	1.134	1.166	1. 238
2 200	1.040	1.135	1. 168	1. 240
2 250	1. 041	1.137	1. 170	1. 242
2 300	1.043	1. 139	1. 171	1. 243
2 350	1.044	1. 140	1. 173	1. 245
2 400	1.045	1.142	1. 175	1. 247
2 450	1.047	1. 143	1. 176	1. 248
2 500	1.048	1.145	1- 178	1. 250

表 4(完)

欲求伸长率的试样	由标距 5.65 $\sqrt{S_o}$ 换算到下列定标距的换算因子 β				
横截面积 S _∞ ─ mm²	200 mm	100 mm	80 mm	50 mm	
2 550	1.050	1. 146	1. 179	1. 252	
2 600	1.051	1.148	1. 181	1- 253	
2 650	1. 052	1.149	1.182	1. 255	
2 700	1.053	1.150	1.183	1.256	
2 750	1.055	1.152	1. 185	1. 258	
2 800	1.056	1. 153	1. 186	1. 259	
2 850	1.057	1.154	1. 187	1. 260	
2 900	1.058	1.156	1. 189	1. 262	
2 950	1. 059	1. 157	1.190	1-263	
3 000	1.060	1. 158	1- 191	1. 265	

表 5 由标距 4 \sqrt{S} 。换算到不同定标距的换算因子 γ

欲求伸长率的试样 機截面积 S ₀ , mm ²	由比例标距 4 √S。换算到下列定标距的换算因子 γ				
	200 mm	100 mm	80 mm	50 mm	
5	0.673	0. 734	0. 756	0.802	
10	0.703	0.767	0. 790	0. 838	
15	0. 721	0. 787	0.810	0.860	
20	0.734	0.802	0.825	0.876	
25	0.745	0.813	0.837	0.888	
30	0.754	0.823	0-847	0.899	
35	0.761	0.831	0.855	0.907	
40	0.767	0.838	0.862	0.915	
45	0.773	0.844	0.869	0.922	
50	0.778	0.850	0.874	0.928	
55	0.783	0.855	0.880	0. 934	
60	0. 787	0.860	0.885	0.939	
70	0. 79 5	0.868	0-893	0.948	
80	0.802	0.876	0.901	0. 956	
90	0.808	0.882	0.908	0.964	
100	0. 813	0.888	0.914	0.970	
110	0.818	0.894	0.919	0.976	
120	0.823	0.899	0.924	0.981	
130	0.827	0. 903	0.929	0. 986	
140	0.831	0.907	0. 934	0. 991	
150	0-835	0. 911	0. 938	0. 995	
160	0. 838	0-915	0.941	0. 999	
170	0.841	0. 919	0.945	1.003	
180	0.844	0.922	0. 949	1.007	
190	0.847	0. 925	0. 952	1.010	
200	0. 850	0. 928	0. 955	1.014	
210	0.853	0. 931	0. 958	1.017	

表 5(续)

欲求伸长率的试样 横截面积 S _∞ mm²	曲	比例标距 4 √S。换算到	了下列定标距的换算因子	ε γ
	200 mm	100 mm	80 mm	50 mm
220	0.855	0. 934	0. 961	1. 020
230	0.858	0. 937	0.963	1. 023
240	0.860	0. 939	0.966	1.025
250	0.862	0.941	0.969	1.028
260	0.864	0.944	0. 971	1.031
270	0.866	0.946	0. 973	1.033
280	0.868	0.948	0.976	1.036
290	0.870	0.950	0.978	1.038
300	0.872	0. 952	0.980	1.040
310	0.874	0. 954	0. 982	1.042
320	0.876	0. 956	0. 984	1.044
330	0. 877	0.958	0. 986	1.046
340	0.879	0.960	0. 988	1.048
350	0. 881	0. 962	0. 989	1.050
360	0. 882	0.964	0. 991	1.052
370	0. 884	0. 9 6 5	0. 993	1.054
380	0. 885	0. 967	0. 995	1- 056
390	0.887	0. 968	0. 996	1:058
400	0. 888	0. 970	0. 998	1.059
410	0.890	0. 972	0. 999	1.061
420	0.891	0.973	1.001	1.063
430	0.892	0. 974	1.002	1.064
440	0. 894	0. 976	1.004	1-066
450	0. 895	0. 977	1.005	1.067
460	0. 896	0. 979	1.007	1.069
470	0.897	0. 980	1.008	1.070
480	0.899	0. 981	1.010	1.072
490	0.900	0. 983	1.011	1.073
500	0. 901	0. 984	1.012	1.074
550	0. 906	0. 990	1.018	1.081
600	0. 911	0. 995	1.024	1.087
650	0. 916	1.000	1.029	1.092
700	0. 920	1.005	1.034	1- 098
750	0. 924	1.010	1.039	1. 102
800	0. 928	1.014	1.043	1- 107
850	0. 932	1.018	1.047	1-111
900	0. 935	1.021	1.051	1. 115
950	0. 938	1.025	1.054	1-119
1 000	0.941	1.028	1.058	1-123
1 050	0.944	1.031	1.061	1.126
1 100	0. 947	1.034	1.064	1. 130
1 150	0. 950	1.037	1.067	1. 133

表 5(完)

欲求伸长率的试样 横截面积 S _{or}	由	比例标距 4 √S。换算到	『下列定标距的换算因子	÷ γ
mm²	200 mm	100 mm	80 mm	50 mm
1 200	0- 952	1. 040	1. 070	1.136
1 250	0.955	1.043	1.073	1. 139
1 300	0.957	1.045	1.075	1. 142
1 350	0.960	1.048	1. 078	1.144
1 400	0. 962	1.050	1.081	1.147
1 450	0.964	1.053	1.083	1.150
1 500	0 . 966	1.055	1- 085	1. 152
1 550	0. 968	1.057	1.088	1.154
1 600	0. 970	1.059	1.090	1. 157
1 650	0. 972	1.061	1.092	1.159
1 700	0.974	1.063	1.094	1. 161
1 750	0.976	1.065	1.096	1. 163
1 800	0.977	1.067	1.098	1. 165
1 850	0. 979	1.069	1.100	1. 167
1 900	0. 981	1.071	1. 102	1. 169
1 950	0. 982	1.073	1. 103	1.171
2 000	0.984	1. 074	1. 105	1. 173
2 050	0 . 98 5	1.076	1. 107	1. 175
2 100	0. 987	1.078	1.109	1. 177
2 150	0.988	1.079	1.110	1. 179
2 200	0. 990	1.081	1. 112	1. 180
2 250	0.991	1.082	1. 114	1. 182
2 300	0. 993	1.084	1. 115	1. 184
2 350	0. 994	1.085	1.117	1. 185
2 400	0. 995	1.087	1. 118	1. 187
2 450	0. 997	1.088	1.120	1. 188
2 500	0. 998	1.090	1. 121	1. 190
2 550	0.999	1. 091	1. 122	1. 191
2 600	1.000	1.092	1. 124	1. 193
2 650	1.002	1.094	1. 125	1. 194
2 700	1.003	1.095	1. 127	1.196
2 750	1.004	1.096	1. 128	1. 197
2 800	1.005	1.098	1.129	1. 199
2 850	1.006	1.099	1- 130	1. 200
2 900	1.007	1. 100	1.132	1. 201
2 950	1.008	1. 101	1. 133	1. 203
3 000	1.010	1.102	1. 134	1.204

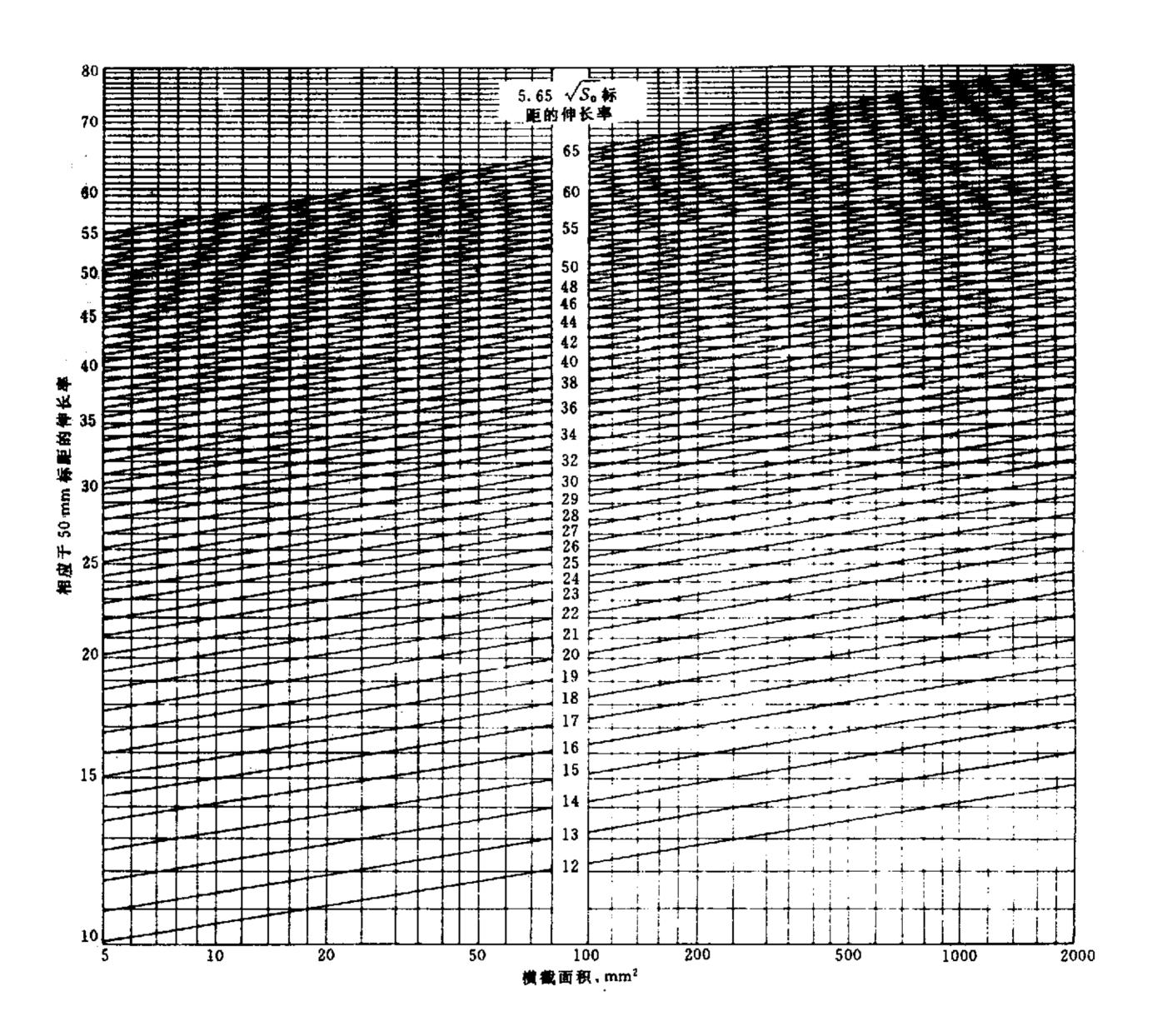


图 1 5.65 $\sqrt{S_o}$ 与 50 mm 定标距的伸长率的换算

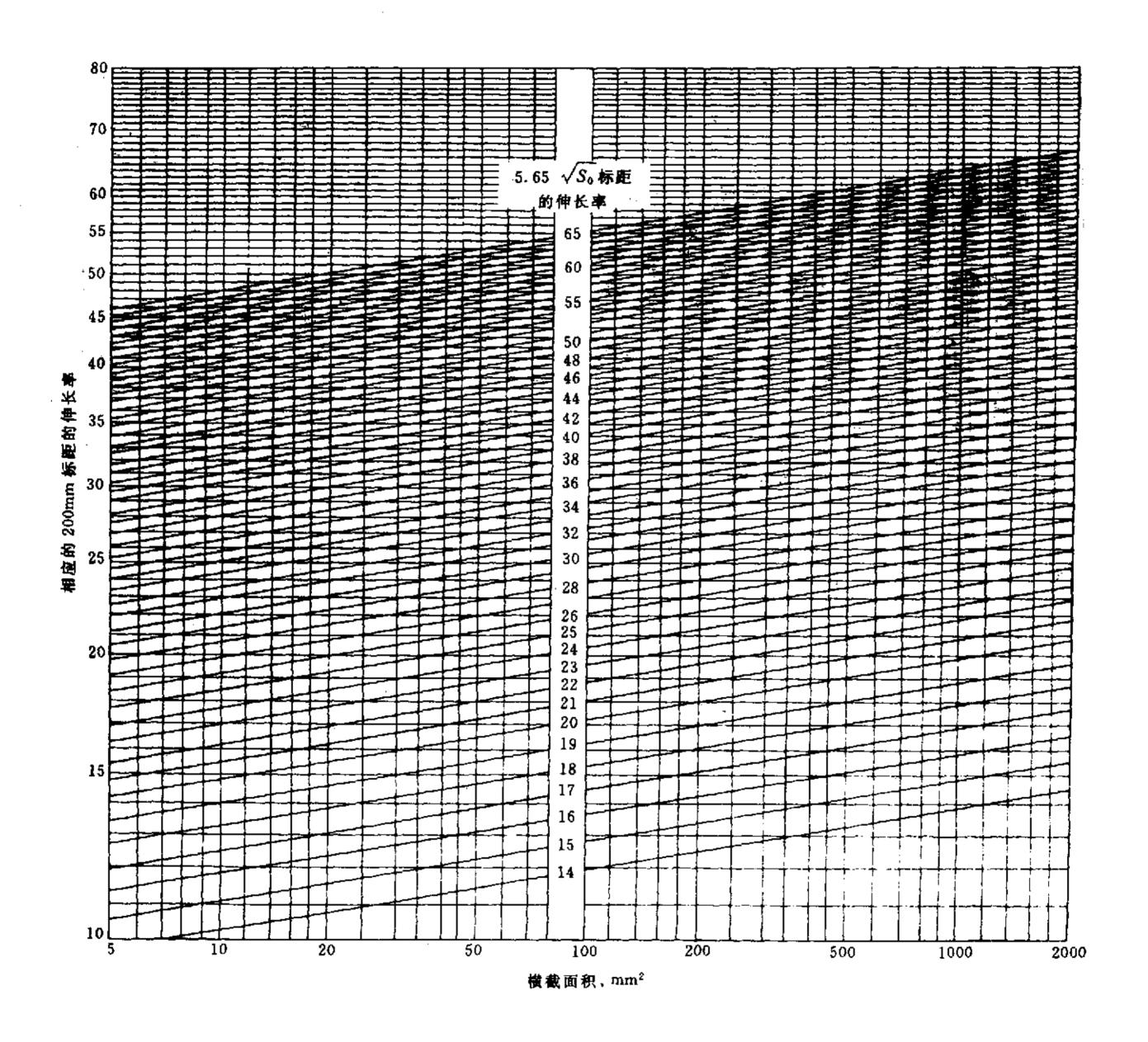


图 2 5.65 $\sqrt{S_o}$ 与 200 mm 标距的伸长率的换算

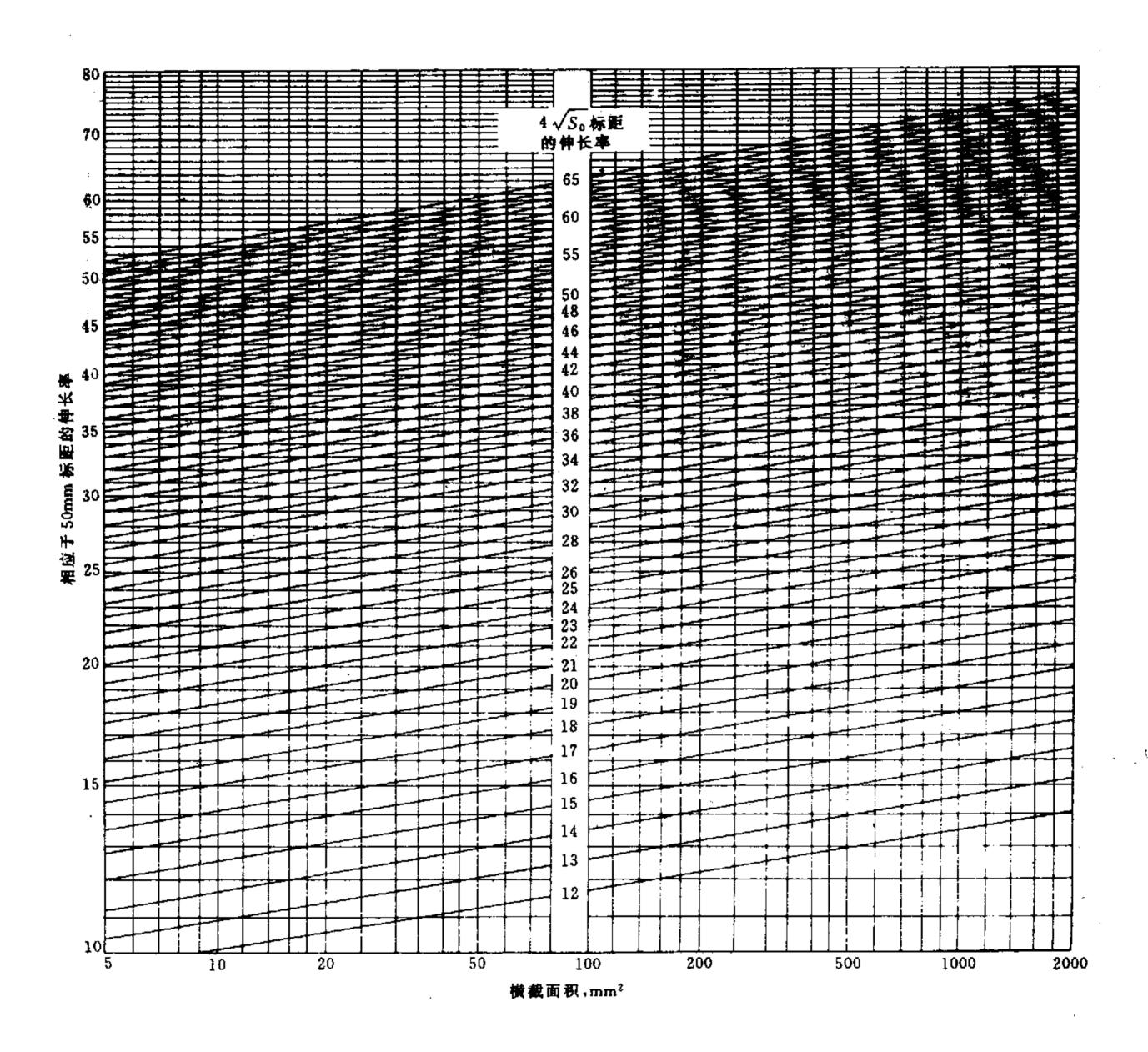


图 3 $4\sqrt{S_o}$ 与 50 mm 定标距之间伸长率的换算

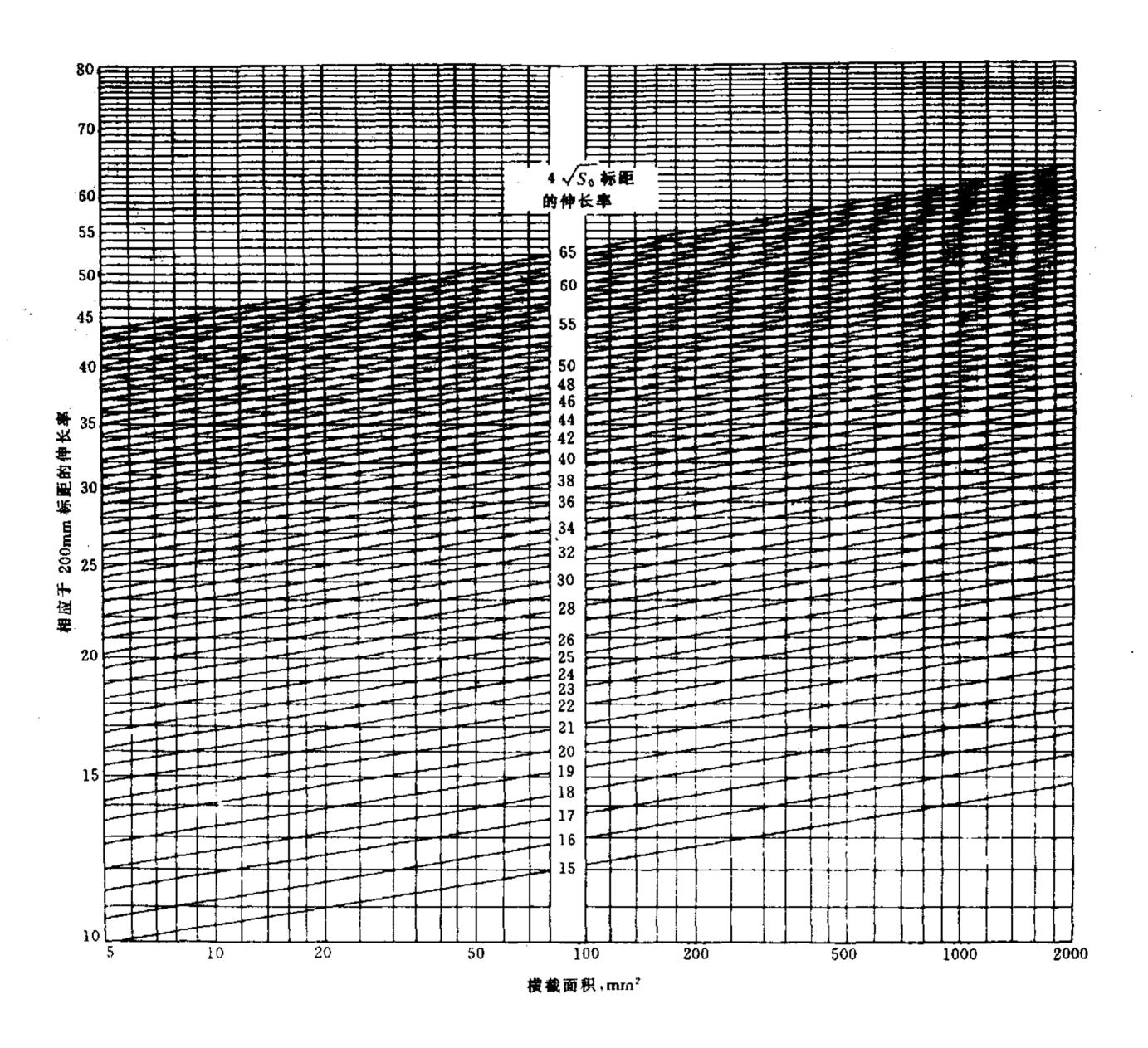


图 4 $\sqrt{S_0}$ 与 200 mm 定标距的伸长率的换算

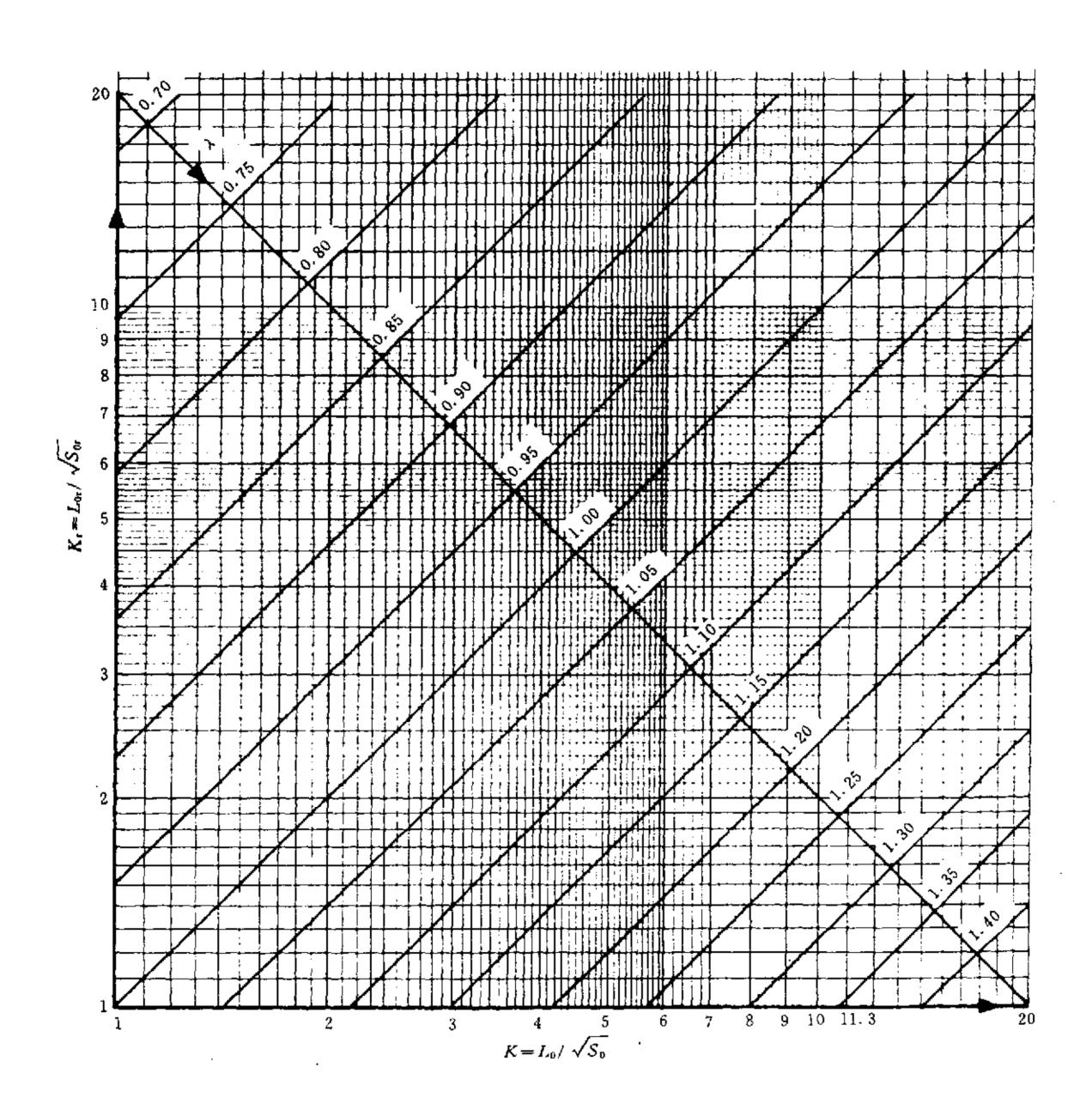


图 5 各类型试样的比例系数 K、K. 与换算因子 λ 的关系